Samantha Solorzano, is a Senior at Ramon C Cortines and through the guidance of the DREAM-High program she was able to get an insight into the world of breast cancer through computational research. She has had experience with doing computer programming for the past couple of years and has learned to code in Python, HTML, CSS, and R. Outside of DREAM-High, she is heavily involved with her hobbies that include dancing, watching films, and advocacy. Currently, she does museum work for the Academy Museum and dances for her school. She is interested in pursuing a major in Mechanical Engineering and continuing to do research in college!
Through hands-on programming, DREAM-High Scholars visualize and analyze genomics, clinical, and physical data from breast cancer cells. DREAM-High is a partnership between the Columbia Center for Cancer Systems Therapeutics, the Palazzo Strozzi Foundation USA, the Stanford Center for Cancer Systems Biology, and the Institute for Systems Biology.
In the DREAM-High program, Scholars learn to program in R, a language for statistical computing and graphics. They manipulate and write code in a cloud-based RStudio environment to analyze a wide range of data on breast cancer patients and cancer cell lines.
I created heat maps as colorized representations of data matrices. I reordered features and observations so that similar entities are close to each other in the graph. Heat maps make it easy to visualize and understand complex data.
I loaded and examined a data frame of clinical information from 1,082 breast cancer patients from The Cancer Genome Atlas (TCGA). I summarized clinical measurements on both the patients, such as gender and age, and the patients’ tumors, such as estrogen receptor status and histology.
I performed an integrative analysis of clinical measurements and gene expression data for 1,082 patients in the TCGA Breast Cancer cohort. By calculating heat maps and annotating them with clinical information, I detected patterns in the patients' expression profiles across 18,351 genes that correspond to luminal and triple negative breast cancers.
I discovered biological processes that distinguish cancer cell lines based on the aggressiveness of the cancers they model. For both breast cancer and colon cancer cell lines, I calculated, visualized, and functionally annotated differential gene expression profiles with data from the Physical Sciences in Oncology Cell Line Characterization Study.
I built linear regression models that are predictive of breast cancer survival from the METABRIC breast cancer dataset. I found that gene expression profiles of certain cancer genes are predictive of prognosis. Inclusion of additional features in my model increased its explanatory power.